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Abstract

The primary purpose of this paper is to provide an in-depth analysis of different
platforms available for performing big data analytics. This paper surveys different
hardware platforms available for big data analytics and assesses the advantages and
drawbacks of each of these platforms based on various metrics such as scalability,
data I/O rate, fault tolerance, real-time processing, data size supported and iterative
task support. In addition to the hardware, a detailed description of the software
frameworks used within each of these platforms is also discussed along with their
strengths and drawbacks. Some of the critical characteristics described here can
potentially aid the readers in making an informed decision about the right choice of
platforms depending on their computational needs. Using a star ratings table, a
rigorous qualitative comparison between different platforms is also discussed for
each of the six characteristics that are critical for the algorithms of big data analytics.
In order to provide more insights into the effectiveness of each of the platform in
the context of big data analytics, specific implementation level details of the widely
used k-means clustering algorithm on various platforms are also described in the
form pseudocode.

Keywords: Big data; MapReduce; graphics processing units; scalability; big data
analytics; big data platforms; k-means clustering; real-time processing
Introduction
This is an era of Big Data. Big Data is driving radical changes in traditional data ana-

lysis platforms. To perform any kind of analysis on such voluminous and complex data,

scaling up the hardware platforms becomes imminent and choosing the right hardware/

software platforms becomes a crucial decision if the user’s requirements are to be satis-

fied in a reasonable amount of time. Researchers have been working on building novel

data analysis techniques for big data more than ever before which has led to the continu-

ous development of many different algorithms and platforms.

There are several big data platforms available with different characteristics and

choosing the right platform requires an in-depth knowledge about the capabilities of

all these platforms [1]. Especially, the ability of the platform to adapt to increased data

processing demands plays a critical role in deciding if it is appropriate to build the ana-

lytics based solutions on a particular platform. To this end, we will first provide a thor-

ough understanding of all the popular big data platforms that are currently being used

in practice and highlight the advantages and drawbacks of each of them.
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Typically, when the user has to decide the right platforms to choose from, he/she will

have to investigate what their application/algorithm needs are. One will come across a

few fundamental issues in their mind before making the right decisions.

� How quickly do we need to get the results?

� How big is the data to be processed?

� Does the model building require several iterations or a single iteration?

Clearly, these concerns are application/algorithm dependent that one needs to address

before analyzing the systems/platform-level requirements. At the systems level, one has to

meticulously look into the following concerns:

� Will there be a need for more data processing capability in the future?

� Is the rate of data transfer critical for this application?

� Is there a need for handling hardware failures within the application?

In this paper, we will provide a more rigorous analysis of these concerns and provide

a score for each of the big data platforms with respect to these issues.

While there are several works that partly describe some of the above mentioned con-

cerns, to the best of our knowledge, there is no existing work that compares different

platforms based on these essential components of big data analytics. Our work primar-

ily aims at characterizing these concerns and focuses on comparing all the platforms

based on these various optimal characteristics, thus providing some guidelines about

the suitability of different platforms for various kinds of scenarios that arise while per-

forming big data analytics in practice.

In order to provide a more comprehensive understanding of the different aspects of

the big data problem and how they are being handled by these platforms, we will pro-

vide a case study on the implementation of k-means clustering algorithm on various

big data platforms. The k-means clustering was chosen here not only because of its

popularity, but also due to the various dimensions of complexity involved with the al-

gorithm such as being iterative, compute-intensive, and having the ability to parallelize

some of the computations. We will provide a detailed pseudocode of the implementa-

tion of the k-means clustering algorithm on different hardware and software platforms

and provide an in-depth analysis and insights into the algorithmic details.

The major contributions of this paper are as follows:

� Illustrate the scaling of various big data analytics platforms and demonstrate the

advantages and drawbacks of each of these platforms including the software

frameworks.

� Provide a systematic evaluation of various big data platforms based on important

characteristics that are pertinent to big data analytics in order to aid the users with

a better understanding about the suitability of these platforms for different problem

scenarios.

� Demonstrate a case study on the k-means clustering algorithm (a representative

analytics procedure) and describe the implementation level details of its functioning

on various big data platforms.
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The remainder of the paper is organized as follows: the fundamental scaling concepts

along with the advantages and drawbacks of horizontal and vertical scaling are ex-

plained in Section “Scaling”. Section “Horizontal scaling platforms” describes various

horizontal scaling platforms including peer-to-peer networks, Hadoop and Spark. In

section “Vertical scaling platforms”, various vertical platforms graphics processing units

and high performance clusters are described. Section “Comparison of different plat-

forms” provides thorough comparisons between different platforms based on several

characteristics that are important in the context of big data analytics. Section “How to

choose a platform for big data analytics?” discusses various details about choosing the

right platform for a particular big data application. A case study on k-means clustering

algorithm along with its implementation level details on each of the big data platform

is described in Section “K-means clustering on different platforms”. Finally, the

“Conclusion” section concludes our discussion along with future directions.
Scaling
Scaling is the ability of the system to adapt to increased demands in terms of data pro-

cessing. To support big data processing, different platforms incorporate scaling in dif-

ferent forms. From a broader perspective, the big data platforms can be categorized

into the following two types of scaling:

� Horizontal Scaling: Horizontal scaling involves distributing the workload across

many servers which may be even commodity machines. It is also known as “scale

out”, where multiple independent machines are added together in order to improve

the processing capability. Typically, multiple instances of the operating system are

running on separate machines.

� Vertical Scaling: Vertical Scaling involves installing more processors, more

memory and faster hardware, typically, within a single server. It is also known as

“scale up” and it usually involves a single instance of an operating system.

Table 1 compares the advantages and drawbacks of horizontal and vertical scaling.

While scaling up vertically can make the management and installation straight-forward,
Table 1 A comparison of advantages and drawbacks of horizontal and vertical scaling

Scaling Advantages Drawbacks

Horizontal scaling ➔ Increases performance in small
steps as needed

➔ Software has to handle all the data
distribution and parallel processing complexities

➔ Financial investment to upgrade
is relatively less

➔ Limited number of software are available that
can take advantage of horizontal scaling

➔ Can scale out the system as much
as needed

Vertical scaling ➔ Most of the software can easily
take advantage of vertical scaling

➔ Requires substantial financial investment

➔ Easy to manage and install
hardware within a single machine

➔ System has to be more powerful to handle
future workloads and initially the additional
performance in not fully utilized

➔ It is not possible to scale up vertically after
a certain limit
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it limits the scaling ability of a platform since it will require substantial financial invest-

ment. To handle future workloads, one always will have to add hardware which is more

powerful than the current requirements due to limited space and the number of expan-

sion slots available in a single machine. This forces the user to invest more than what

is required for his current processing needs.

On the other hand, horizontal scale out gives users the ability to increase the per-

formance in small increments which lowers the financial investment. Also, there is no

limit on the amount of scaling that can done and one can horizontally scale out the

system as much as needed. In spite of these advantages, the main drawback is the lim-

ited availability of software frameworks that can effectively utilize horizontal scaling.
Horizontal scaling platforms
Some of the prominent horizontal scale out platforms include peer-to-peer networks and

Apache Hadoop. Recently, researchers have also been working on developing the next

generation of horizontal scale out tools such as Spark [2] to overcome the limitations of

other platforms. We will now discuss each of these platforms in more detail in this section.
Peer-to-peer networks

Peer-to-Peer networks [3,4] involve millions of machines connected in a network. It is

a decentralized and distributed network architecture where the nodes in the networks

(known as peers) serve as well as consume resources. It is one of the oldest distributed

computing platforms in existence. Typically, Message Passing Interface (MPI) is the

communication scheme used in such a setup to communicate and exchange the data

between peers. Each node can store the data instances and the scale out is practically

unlimited (can be millions of nodes).

The major bottleneck in such a setup arises in the communication between different

nodes. Broadcasting messages in a peer-to-peer network is cheaper but the aggregation

of data/results is much more expensive. In addition, the messages are sent over the net-

work in the form of a spanning tree with an arbitrary node as the root where the

broadcasting is initiated.

MPI, which is the standard software communication paradigm used in this network,

has been in use for several years and is well-established and thoroughly debugged. One

of the main features of MPI includes the state preserving process i.e., processes can live

as long as the system runs and there is no need to read the same data again and again

as in the case of other frameworks such as MapReduce (explained in section “Apache

hadoop”). All the parameters can be preserved locally. Hence, unlike MapReduce, MPI

is well suited for iterative processing [5]. Another feature of MPI is the hierarchical

master/slave paradigm. When MPI is deployed in the master–slave model, the slave

machine can become the master for other processes. This can be extremely useful for

dynamic resource allocation where the slaves have large amounts of data to process.

MPI is available for many programming languages. It includes methods to send and

receive messages and data. Some other methods available with MPI are ‘Broadcast’,

which is used to broadcast the data or messages over all the nodes and ‘Barrier’, which

is another method that can put a barrier and allows all the processes to synchronize

and reach up to a certain point before proceeding further.
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Although MPI appears to be perfect for developing algorithms for big data analytics,

it has some major drawbacks. One of the primary drawbacks is the fault intolerance

since MPI has no mechanism to handle faults. When used on top of peer-to-peer net-

works, which is a completely unreliable hardware, a single node failure can cause the

entire system to shut down. Users have to implement some kind of fault tolerance

mechanism within the program to avoid such unfortunate situations. With other frame-

works such as Hadoop (that are robust to fault tolerance) becoming widely popular,

MPI is not being widely used anymore.
Apache hadoop

Apache Hadoop [6] is an open source framework for storing and processing large data-

sets using clusters of commodity hardware. Hadoop is designed to scale up to hundreds

and even thousands of nodes and is also highly fault tolerant. The various components

of a Hadoop Stack are shown in Figure 1. The Hadoop platform contains the following

two important components:

� Distributed File System (HDFS) [7] is a distributed file system that is used to store

data across cluster of commodity machines while providing high availability and

fault tolerance.

� Hadoop YARN [8] is a resource management layer and schedules the jobs across

the cluster.

MapReduce

The programming model used in Hadoop is MapReduce [9] which was proposed by

Dean and Ghemawat at Google. MapReduce is the basic data processing scheme used

in Hadoop which includes breaking the entire task into two parts, known as mappers

and reducers. At a high-level, mappers read the data from HDFS, process it and

generate some intermediate results to the reducers. Reducers are used to aggregate

the intermediate results to generate the final output which is again written to HDFS.

A typical Hadoop job involves running several mappers and reducers across different

nodes in the cluster. A good survey about MapReduce for parallel data processing is

available in [10].
Figure 1 Hadoop Stack showing different components.
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MapReduce wrappers

A certain set of wrappers are currently being developed for MapReduce. These wrappers

can provide a better control over the MapReduce code and aid in the source code devel-

opment. The following wrappers are being widely used in combination with MapReduce.

� Apache Pig is a SQL-like environment developed at Yahoo [11] is being used by

many organizations like Yahoo, Twitter, AOL, LinkedIn etc. Hive is another

MapReduce wrapper developed by Facebook [12]. These two wrappers provide

a better environment and make the code development simpler since the

programmers do not have to deal with the complexities of MapReduce coding.

� Programming environments such as DryadLINQ, on the other hand, provide the

end users with more flexibility over the MapReduce by allowing the users to have

more control over the coding. It is a C# like environment developed at Microsoft

Research [13]. It uses LINQ (a parallel language) and a cluster execution

environment called Dryad. The advantages include better debugging and

development using Visual Studio as the tool and interoperation with other

languages such as standard .NET.

In addition to these wrappers, some researchers have also developed scalable machine

learning libraries such as Mahout [14] using MapReduce paradigm.

Limitations of MapReduce

One of the major drawbacks of MapReduce is its inefficiency in running iterative algo-

rithms. MapReduce is not designed for iterative processes. Mappers read the same data

again and again from the disk. Hence, after each iteration, the results have to be written to

the disk to pass them onto the next iteration. This makes disk access a major bottleneck

which significantly degrades the performance. For each iteration, a new mapper and re-

ducer have to be initialized. Sometimes the MapReduce jobs are short-lived in which case

the overhead of initialization of that task becomes a significant overhead to the task itself.

Some workarounds such as forward scheduling (setting up the next MapReduce job before

the previous one finishes) have been proposed. However, these approaches introduce add-

itional levels of complexity in the source code. One such work called HaLoop [15] extends

MapReduce with programming support for iterative algorithms and improves efficiency by

adding caching mechanisms. CGL MapReduce [16,17] is another work that focuses on im-

proving the performance of MapReduce iterative tasks. Other examples of iterative

MapReduce include Twister [18] and imapreduce [19].
Spark: next generation data analysis paradigm

Spark is a next generation paradigm for big data processing developed by researchers at

the University of California at Berkeley. It is an alternative to Hadoop which is designed

to overcome the disk I/O limitations and improve the performance of earlier systems.

The major feature of Spark that makes it unique is its ability to perform in-memory

computations. It allows the data to be cached in memory, thus eliminating the

Hadoop’s disk overhead limitation for iterative tasks. Spark is a general engine for

large-scale data processing that supports Java, Scala and Python and for certain tasks it

is tested to be up to 100× faster than Hadoop MapReduce when the data can fit in the
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memory, and up to 10× faster when data resides on the disk. It can run on Hadoop

Yarn manager and can read data from HDFS. This makes it extremely versatile to run

on different systems.

Berkeley data analytics stack (BDAS)

The Spark developers have also proposed an entire data processing stack called

Berkeley Data Analytics Stack (BDAS) [20] which is shown in Figure 2. At the lowest

level of this stack, there is a component called Tachyon [21] which is based on HDFS.

It is a fault tolerant distributed file system which enables file sharing at memory-speed

(data I/O speed comparable to system memory) across a cluster. It works with cluster

frameworks such as Spark and MapReduce. The major advantage of Tachyon over

Hadoop HDFS is its high performance which is achieved by using memory more ag-

gressively. Tachyon can detect the frequently read files and cache them in memory thus

minimizing the disk access by different jobs/queries. This enables the cached files to be

read at memory speed. Another feature of Tachyon is its compatibility with Hadoop

MapReduce. MapReduce programs can run over Tachyon without any modifications.

The other advantage of using Tachyon is its support for raw tables. Tables with hun-

dreds of columns can be loaded easily and the user can specify the frequently used col-

umns to be loaded in memory for faster access.

The second component in BDAS, which is the layer above Tachyon, is called Apache

Mesos. Mesos is a cluster manager that provides efficient resource isolation and sharing

across distributed applications/frameworks. It supports Hadoop, Spark, Aurora [22], and

other applications on a dynamically shared pool of resources. With Mesos, scalability can

be increased to tens of thousands of nodes. APIs are available in java, python and C++ for

developing new parallel applications. It also includes multi-resource scheduling capabilities.

The third component running on top of Mesos is Spark which takes the place of

Hadoop MapReduce in the BDAS architecture. On the top of the stack are many Spark

wrappers such as Spark Streaming (Large Scale real-time stream processing), Blink DB

(queries with bounded errors and bounded response times on very large data) [23],

GraphX (Resilient distributed Graph System on Spark) [24] and MLBase (distributed

machine learning library based on Spark) [25].

Recently, BDAS and Spark have been receiving a lot of attention due to their per-

formance gain over Hadoop. Now, it is even possible to run Spark on Amazon Elastic

Map-Reduce [26]. Although BDAS consists of many useful components in the top layer
Figure 2 An illustration of Berkeley Data Analysis Stack and its various components [20].
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(for various applications), many of them are still in the early stages of development and

hence the support is rather limited. Due to the vast number of tools that are already

available for Hadoop MapReduce, it is still the most widely used distributed data pro-

cessing framework.
Vertical scaling platforms
The most popular vertical scale up paradigms are High Performance Computing Clusters

(HPC), Multicore processors, Graphics Processing Unit (GPU) and Field Programmable

Gate Arrays (FPGA). We describe each of these platforms and their capabilities in the

following sections.
High performance computing (HPC) clusters

HPC clusters [27], also called as blades or supercomputers, are machines with thou-

sands of cores. They can have a different variety of disk organization, cache, communi-

cation mechanism etc. depending upon the user requirement. These systems use well-

built powerful hardware which is optimized for speed and throughput. Because of the

top quality high-end hardware, fault tolerance in such systems is not problematic since

hardware failures are extremely rare. The initial cost of deploying such a system can be

very high because of the use of the high-end hardware. They are not as scalable as

Hadoop or Spark clusters but they are still capable of processing terabytes of data. The

cost of scaling up such a system is much higher compared to Hadoop or Spark clusters.

The communication scheme used for such platforms is typically MPI. We already dis-

cussed about MPI in the peer-to-peer systems (see section “Peer-to-peer networks”).

Since fault tolerance is not an important issue in this case, MPIs’ lack of fault tolerance

mechanism does not come as a significant drawback here.
Multicore CPU

Multicore refers to one machine having dozens of processing cores [28]. They usually

have shared memory but only one disk. Over the past few years, CPUs have gained

internal parallelism. More recently, the number of cores per chip and the number of

operations that a core can perform has increased significantly. Newer breeds of mother-

boards allow multiple CPUs within a single machine thereby increasing the parallelism.

Until the last few years, CPUs were mainly responsible for accelerating the algorithms

for big data analytics.

Figure 3(a) shows a high-level CPU architecture with four cores. The parallelism in

CPUs is mainly achieved through multithreading [29]. All the cores share the same

memory. The task has to be broken down into threads. Each thread is executed in par-

allel on different CPU cores. Most of the programming languages provide libraries to

create threads and use CPU parallelism. The most popular choice of such programming

languages is Java. Since multicore CPUs have been around for several years, a large

number of software applications and programming environments are well developed

for this platform. The developments in CPUs are not at the same pace compared to

GPUs. The number of cores per CPU is still in double digits with the processing power

close to 10Gflops while a single GPU has more than 2500 processing cores with
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1000Tflops of processing power. This massive parallelism in GPU makes it a more ap-

pealing option for parallel computing applications.

The drawback of CPUs is their limited number of processing cores and their primary

dependence on the system memory for data access. System memory is limited to a few

hundred gigabytes and this limits the size of the data that a CPU can process efficiently.

Once the data size exceeds the system memory, disk access becomes a huge bottleneck.

Even if the data fits into the system memory, CPU can process data at a much faster

rate than the memory access speed which makes memory access a bottleneck. GPU

avoids this by making use of DDR5 memory compared to a slower DDR3 memory used

in a system. Also, GPU has high speed cache for each multiprocessor which speeds up

the data access.
Graphics processing unit (GPU)

Graphics Processing Unit (GPUs) is a specialized hardware designed to accelerate the

creation of images in a frame buffer intended for display output [30]. Until the past few

years, GPUs were primarily used for graphical operations such as video and image edit-

ing, accelerating graphics-related processing etc. However, due to their massively paral-

lel architecture, recent developments in GPU hardware and related programming

frameworks have given rise to GPGPU (general-purpose computing on graphics pro-

cessing units) [31]. GPU has large number of processing cores (typically around 2500+

to date) as compared to a multicore CPU. In addition to the processing cores, GPU has

its own high throughput DDR5 memory which is many times faster than a typical DDR3

memory. GPU performance has increased significantly in the past few years compared to

that of CPU. Recently, Nvidia has launched Tesla series of GPUs which are specifically de-

signed for high performance computing. Nvidia has released the CUDA framework which

made GPU programming accessible to all programmers without delving into the hardware

details. These developments suggest that GPGPU is indeed gaining more popularity.

Figure 3(b) shows a high-level GPU architecture with 14 multiprocessors and 32 stream-

ing processors per block. It usually has two levels of parallelism. At the first level, there
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are several multiprocessors (MPs) and within each multiprocessor there are several

streaming processors (SPs). To use this setup, GPU program is broken down into threads

which execute on SPs and these threads are grouped together to form thread blocks

which run on a multiprocessor. Each thread within a block can communicate with each

other and synchronize with other threads in the same block. Each of these threads has ac-

cess to small but extremely fast shared cache memory and larger global main memory.

Threads in one block cannot communicate with the threads in the other block as they

may be scheduled at different times. This architecture implies that for any job to be run

on GPU, it has to be broken into blocks of computation that can run independently with-

out communicating with each other [32]. These blocks will have to be further broken

down into smaller tasks that execute on an individual thread that may communicate with

other threads in the same block.

GPUs have been used in the development of faster machine learning algorithms.

Some libraries such as GPUMiner [33] implement few machine learning algorithms on

GPU using the CUDA framework. Experiments have shown many folds speedup using

the GPU compared to a multicore CPU.

GPU has its own drawbacks. The primary drawback is the limited memory that it

contains. With a maximum of 12GB memory per GPU (as of current generation), it is

not suitable to handle terabyte scale data. Once the data size is more than the size of

the GPU memory, the performance decreases significantly as the disk access becomes

the primary bottleneck. Another drawback is the limited amount of software and

algorithms that are available for GPUs. Because of the way in which the task breakdown

is required for GPUs, not many existing analytical algorithms are easily portable

to GPUs.
Field programmable gate arrays (FPGA)

FPGAs are highly specialized hardware units which are custom-built for specific appli-

cations [34]. FPGAs can be highly optimized for speed and can be orders of magnitude

faster compared to other platforms for certain applications. They are programmed

using Hardware descriptive language (HDL) [35]. Due to customized hardware, the de-

velopment cost is typically much higher compared to other platforms. On the software

side, coding has to be done in HDL with a low-level knowledge of the hardware which

increases the algorithm development cost. User has to carefully investigate the suitabil-

ity of a particular application for FPGA as they are effective only for a certain set of

applications.

FPGAs are used in a variety of real-world applications [36, 37]. One example where

FPGA was successfully deployed is in the network security applications [38]. In one

such application, FPGA is used as a hardware firewall and is much faster than the soft-

ware firewalls in scanning large amounts of network data [39]. In the recent years, the

speed of multicore processors is reaching closer to that of FPGAs.
Comparison of different platforms
We will now provide a more detailed comparison of different platforms using the (star)

ratings, where 5 stars correspond to the best possible rating and 1 star corresponds to

the lowest possible rating for any given platform for a particular characteristic. Table 2



Table 2 Comparison of different platforms (along with their communication
mechanisms) based on various characteristics

Scaling
type

Platforms
(Communication
Scheme)

System/Platform Application/Algorithm

Scalability Data I/O
performance

Fault
tolerance

Real-time
processing

Data size
supported

Iterative
task
support

Horizontal
scaling

Peer-to-Peer (TCP/IP) ★★★★★ ★ ★ ★ ★★★★★ ★★

Virtual clusters
(MapRedce/MPI)

★★★★★ ★★ ★★★★★ ★★ ★★★★ ★★

Virtual clusters (Spark) ★★★★★ ★★★ ★★★★★ ★★ ★★★★ ★★★

Vertical
scaling

HPC clusters
(MPI/Mapreduce)

★★★ ★★★★ ★★★★ ★★★ ★★★★ ★★★★

Multicore
(Multithreading)

★★ ★★★★ ★★★★ ★★★ ★★ ★★★★

GPU (CUDA) ★★ ★★★★★ ★★★★ ★★★★★ ★★ ★★★★

FPGA (HDL) ★ ★★★★★ ★★★★ ★★★★★ ★★ ★★★★
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compares the different platforms based on the following characteristics: scalability, data

I/O performance, fault tolerance, real-time processing, data size support and the sup-

port for iterative tasks. Clearly, the first three characteristics are system/platform

dependent and last three are application/algorithm dependent. We will provide more

details about each of these characteristics and evaluate the “goodness” of each platform

for that particular characteristic by providing the star ratings for each of the platform

with respect to these characteristics. It should be noted that this table provides a mere

qualitative comparisons between the platforms and is not intended to bring any quanti-

tative judgments about these platforms. In other words, a rating of two stars for a plat-

form should be interpreted as better than having a one star and does not necessarily

mean that it is two times better than the platform with a one star. Similarly, if a platform

X is rated with four stars, platform Y is rated with two stars, and platform Z is rated with

one star, then it should be interpreted as platform X is significantly better than platform Z

compared to platform Y. It should also be noted that it is almost impossible to quantify

this significance in a general scenario and one can only do so in the context of a specific

application or a problem at hand. However, we anticipate that this rating table provides a

snapshot of the general strengths and weaknesses of various platforms available in the

context of the critical characteristics related to big data analytics.
Scalability

Scalability is defined as the ability of the system to handle growing amount of work

load in a capable manner or its ability to be enlarged to accommodate that growth. In

our case, scalability is considered to be the ability to add more hardware (scale up or

scale out) to improve the capacity and performance of a system.

In this category, the virtual clusters and peer-to-peer networks will get 5 stars since

these systems are highly scalable. In these two platforms, it is relatively easy to add

more machines and scale out these systems to any extent needed. The HPC clusters

will receive a 3 star rating because it becomes difficult to scale up these systems after a

certain extent. HPC clusters can have thousands of cores but once deployed, they are

expensive to scale up. 2 Stars for GPU shows that the scalability is not the strength of
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GPUs. There is a limit on the number of GPUs a single machine can have and adding

more machines will create data transfer bottleneck over the network. 1 star rating for

FPGA is due to the fact that once FPGA is developed and deployed, scaling up and

modifying becomes extremely costly.
Data I/O performance

Data I/O performance refers to the rate at which the data is transferred to/from a per-

ipheral device. In the context of big data analytics, this can be viewed as the rate at

which the data is read and written to the memory (or disk) or the data transfer rate

between the nodes in a cluster. GPU and FPGA receive 5 stars since they have high

throughput memory and the data I/O operations are extremely fast. The current gener-

ation GPUs are available with DDR5 memory which is many times faster than the

DDR3 system memory. HPC clusters and Multicore will fall next in this category with

4 stars. These systems usually make use of system memory which is reasonably faster

compared to disk access. Since HPC clusters and Multicore are usually single machines,

network access is not a bottleneck.

Virtual clusters using the Spark framework receive 3 stars since Spark makes use of

system memory which gives it an edge over Hadoop. Although system memory is fast,

the data transfer between different nodes still takes place over the network. This makes

the network access a bottleneck for data I/O. Virtual clusters using MapReduce over

Hadoop receive 2 stars as they primarily read data from the disk which is a rather slow

and time consuming process. In addition, the communication over the network degrades

the performance.

Peer-to-peer systems are the worst in this category and will receive only 1 star. These

systems use disks for the data access. In addition, the unmanaged and complex network

scheme makes it very inefficient to aggregate the results over a single node and makes

network communication even slower compared to the virtual clusters. These flaws de-

grade the data I/O performance.
Fault tolerance

Fault tolerance [40] is the characteristic of a system to continue operating properly in

the event of a failure of one or more components. Since we created this table with an

intent to compare the platforms of similar capacity, we additionally consider the chances

of failure in a system and give a high rating if system failures are extremely rare even

though it may not have any fault tolerance mechanism. This enables us to make an un-

biased comparison between unreliable systems with fault tolerance and reliable hardware

with not so good fault tolerance mechanism.

Virtual clusters get 5 stars since they primarily use MapReduce or Spark, running on

frameworks such as Hadoop which have efficient in-built fault tolerant mechanisms.

On the other hand, HPC clusters, Multicore, GPU and FPGA get 4 stars. Although

none of these contain the state-of-the-art fault tolerant mechanisms, they have the

most reliable and well-built hardware which makes the hardware failure an extremely

rare event. They get a slightly lower rating compared to the virtual clusters because of

the occasional hardware failures that can still happen in spite of their rarity. 1 star rat-

ing is given to peer-to-peer networks, which shows their inability to handle system
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failures. They do not have any in-built fault tolerance mechanisms and additionally

these networks mainly consist of commodity machines which are highly susceptible to

hardware failures.
Real-time processing

Real-time processing of a system is its ability to process the data and produce the re-

sults strictly within certain time constrains. Real-time responses are often delivered in

the order of milliseconds and sometimes microseconds depending on the application

and the user requirements.

In this category, FPGA and GPU score 5 stars and outperform other platforms. GPU

with its thousands of processing cores and high memory bandwidth is well suited for

real-time data processing. Although their memory is limited, GPUs are optimized for

speed and are often used for online processing. Similarly, FPGAs are specially built

hardware optimized for speed and are suitable for real-time data processing.

Multicores and HPC clusters get 3 stars. They have reasonable real-time processing

capabilities (though not as good as GPU and FPGA) with many processing cores and

high bandwidth memory. Virtual clusters with 2 stars are not typically used for hand-

ling real-time processing tasks. They are slow in data I/O between the nodes and do

not contain powerful and optimized hardware. Peer-to-Peer networks are the worst

performers in this category and hence they receive only 1 star. They are slow with re-

spect to real-time data processing because of the network communication overhead

and commodity hardware.
Data size supported

Data size support is the size of the dataset that a system can process and handle effi-

ciently. In this category, peer-to-peer networks will receive 5 stars since they can handle

even petabytes of data and can theoretically scale out to unlimited number of nodes.

Virtual clusters and HPC clusters can handle terabytes of data and thus will receive 4

stars. Virtual clusters can scale up to tens of thousands of nodes and frameworks like

Hadoop and Spark are capable of processing and handling such large datasets.

Multicore, GPU and FPGA are not well suited for processing large data sets. All these

systems get 2 stars for the limited size of the data that they can support. GPUs have a

limited on-board memory in the order of several gigabytes. Similarly, Multicore systems

rely on system memory which can only be up to hundreds of gigabytes.
Iterative tasks support

This is the ability of a system to efficiently support iterative tasks. Since many of the

data analysis tasks and algorithms are iterative in nature, it is an important metric to

compare different platforms, especially in the context of big data analytics.

HPC clusters, Multicore, GPU and FPGA score 4 stars in this category and all of

them are highly suitable for iterative algorithms. However, all the iterative algorithms

cannot be easily modified to run on each of these platforms which is the primary rea-

son for giving 4 stars instead of 5 stars. These platforms are perfectly suitable for itera-

tive algorithms since the result of one iteration can be easily used in the next iteration
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and all the parameters can be stored locally. Processes can reside and can keep running

as long as the machine is running [41].

Virtual clusters using spark receive only 3 stars. The ability of the spark framework

to use system memory for storing the data significantly reduces the data I/O overhead.

The iterative tasks can still run in such cases but not as efficiently as the other platforms

mentioned earlier. Data still has to be written to the memory after every iteration.

Virtual clusters using MapReduce and peer-to-peer frameworks are not designed to

handle iterative tasks and hence received only 2 stars. MapReduce is not designed for it-

erative processing and the data has to be written onto the disk after every iteration, thus

making the disk I/O a huge bottleneck. Some recent developments such as HaLoop im-

proves MapReduce performance for iterative tasks to a certain extent which is why it was

not given a 1 star. Peer-to-peer networks using TCP/IP are overwhelmed by the network

communication overhead. To combine the results from different nodes after every iter-

ation presents a significant challenge due to the complex network structure.
How to choose a platform for big data analytics?
The star ratings provided in Table 2 gives a bird’s eye view of the capabilities and features

of different platforms. The decision to choose a particular platform for a certain applica-

tion usually depends on the following important factors: data size, speed or throughput

optimization and model development. We will now provide more details about each of

these factors.
Data size

The size of data that is being considered for processing is probably the most important

factor. If the data can fit into the system memory, then clusters are usually not required

and the entire data can be processed on a single machine. The platforms such as GPU,

Multicore CPUs etc. can be used to speed up the data processing in this case. If the

data does not fit into the system memory, then one has to look at other cluster options

such as Hadoop, Spark etc. Again, Hadoop and Spark clusters can handle large amount

of data but Hadoop has well developed tools and frameworks although it is slower for

iterative tasks. The user has to decide if he needs to use off-the-shelf tools which are

available for Hadoop or if he wants to optimize the cluster performance in which case

Spark is more appropriate.
Speed or throughput optimization

Here, speed refers to the ability of the platform to process data in real-time whereas

throughput refers to the amount of data that system is capable of handling and pro-

cessing simultaneously. The users will need to be clear about whether the goal is to

optimize the system for speed or throughput. If one needs to process large amount of

data and do not have strict constraints on the processing time, then one can look into

systems which can scale out to process huge amounts of data such as Hadoop, Peer-

to-Peer networks, etc. These platforms can handle large-scale data but usually take

more time to deliver the results. On the other hand, if one needs to optimize the sys-

tem for speed rather than the size of the data, then they need to consider systems

which are more capable of real-time processing such as GPU, FPGA etc. These
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platforms are capable of processing the data in real-time but the size of the data sup-

ported is rather limited.
Training/Applying a model

In data analytics, training of the model is typically done offline and it usually takes a

significant amount of time. A model is typically applied in an online environment

where the user expects the results within a short period of time (almost instanta-

neously). This creates a strong need for investigating different platforms for training

and applying a model depending on the end-user application. Usually, during the

training process, the user needs to deal with large amount of training data and since

training is done offline, the processing time is not critical. This makes horizontal

scale out platforms suitable for training a model. When a model is applied, results

are expected in real-time and vertical scale up platforms are usually preferred. GPUs

are preferable over other platforms when the user has strict real-time constraints

and the data can be fit into the system memory. On the other hand, the HPC clus-

ters can handle more data compared to GPUs but are not suitable for real-time pro-

cessing compared to GPUs.
Practical implications

This work can provide useful insights for a wide variety of practical applications.

Many users and researchers working in different areas of big data ranging from real-

time systems to large-scale data processing applications can assess the advantages and

disadvantages of the platforms they are currently using. This survey will be immensely

helpful for them to understand if they can improve the existing systems by choosing

the right platform. The strengths and weaknesses of each of the platforms are clearly

highlighted in this paper. More specifically, for big data applications, there is often a

trade-off between the real-time analysis requirements and the scalability of the data

being processed. For the former, GPUs will be optimal choice and for the latter hori-

zontal scaling platforms such as Hadoop and Spark are optimal choices. For example,

in some of the recommendation problems dealing with millions of users, it is ex-

tremely important to have a scalable platform that can handle huge amounts of data

processing and it is not absolutely required to have the results in a real-time manner.

In web search applications, due to the billions of webpages available, the webpage

indexing process will require a highly scalable platform which can accurately index

the webpages offline. However, for the actual online component where the user enters

the query and the results are expected to be obtained in real-time, vertical scaling

platforms might be more suitable. Hence, depending on the application, one can prob-

ably define the most critical needs and then choose the right kind of platform accord-

ingly. In the previous section, we characterized several such needs for practical

applications.
K-means clustering on different platforms
In order to provide more insights into the analytics algorithms on different platforms,

we will demonstrate the implementation of the K-Means clustering algorithm on these

platforms presented so far. The choice of the K-Means algorithm was made not only
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because of its popularity and wide usage [42, 43], but also due to some of its critical el-

ements that can demonstrate the ability of various platforms in handling other analytics

procedures. Some of these characteristics include:

� Iterative nature of the algorithm wherein the current iteration results are needed

before proceeding to the next iteration.

� Compute-intensive task of calculating the centroids from a set of datapoints.

� Aggregation of the local results to obtain a global solution when the algorithm

is parallelized.

It should be noted that many of the analytics algorithms share atleast some of these

characteristics. Hence, it is important to understand how these characteristics of K-means

clustering algorithm are being handled using different platforms. Figure 4 explains the

different steps involved in a basic K-means clustering algorithm. The algorithm starts by

initializing the cluster centroids. In the next step, each data point is associated with closest

centroid and in the third step, the centroids are recalculated for all the associated data

instances for a given cluster. The second and third steps are repeated until the centroids

converge (or after a pre-defined number of iterations).

We will now discuss the implementation details of this algorithm on different plat-

forms to get a deeper understanding of how such iterative algorithms are modified to

fit different communication schemes.
K-means on MapReduce

MapReduce is not an ideal choice for iterative algorithms such as K-Means clustering.

This will be clearly shown in this section as we explain the K-Means clustering using

MapReduce. The pseudocode for mapper and reducer functions for k-means clustering

algorithm is given in Figure 5. Basically, mappers read the data and the centroids from

the disk. These mappers then assign data instances to clusters. Once every mapper has

completed their operation, reducers compute the new centroids by calculating the

average of data points present in each cluster. Now, these new centroids are written to

the disk. These centroids are then read by the mappers for the next iteration and the

entire process is repeated until the algorithm converges. This shows the disk access

bottleneck of MapReduce for iterative tasks as the data has to be written to the disk

after every iteration.
Figure 4 The pseudocode of the K-means clustering algorithm.



Figure 5 Pseudocode of MapReduce based K-means clustering algorithm. The first part shows the
map function and the second part shows the reduce function.
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K-means on MPI

MPI [44] typically have a master–slave setting and the data is usually distributed among

the slaves. Figure 6 explains the pseudocode for K-means using MPI. In the first step,

the slaves read their portion of the data. In the second step, the master broadcasts the

centroids to the slaves. Next, the slaves assign data instances to the clusters and com-

pute new local centroids which are then sent back to the master. Master will then com-

pute new global centroids by aggregating local centroids weighted by local cluster sizes.

These new global centroids are then again broadcasted back to the slaves for the next

iteration of K-means. In this manner, the process continues until the centroids con-

verge. In this implementation, the data is not written to the disk but the primary bottle-

neck lies in the communication when MPI is used with peer-to-peer networks since

aggregation is costly and the network performance will be low.
K-means on GPU

GPU has a large number of processing cores. Hence, in order to effectively utilize all

the cores, the algorithm will need to be modified cautiously. Figure 7 shows the

pseudocode of K-means using GPU. In the case of K-means, each processor is given a

small task (assigning a data vector to a centroid). Also, a single core in a GPU is not very

powerful which is why the centroid recalculation is done on the CPU. The centroids are

uploaded to the shared memory of the GPU and the datapoints are partitioned and

uploaded into each multiprocessor. These multiprocessors work on one data vector at a
Figure 6 Pseudocode of k-means clustering algorithm using MPI in a master–slave configuration.



Figure 7 The pseudocode of the K-means clustering algorithm on GPU.
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time and associate it with the closest centroid. Once all the points are assigned to the cen-

troids, CPU recalculates the centroids and again will upload the new centroids to the mul-

tiprocessors. This process is repeated until the centroids converge or until a pre-defined

number of iterations are completed. Another aspect to consider here is the density of the

data. If the data is sparse, many multiprocessors will stall due to scarcity of data vectors to

compute, which will eventually degrade the performance. In a nutshell, the performance

of GPUs will be the best when the data is relatively denser and when the algorithm is care-

fully modified to take advantage of processing cores.
K-means on other platforms

K-means implementation on Spark is similar to the MapReduce-based implementation

described in Section K-means on MapReduce. Instead of writing the global centroids to

the disk, they are written into the memory which speeds up the processing and reduces

the disk I/O overhead. In addition, the data will be loaded into the system memory in

order to provide faster access. The K-means clustering on CPU involves multithreading

where each thread associates a data vector to a centroid and finally the centroids are

recomputed for the next iteration. On the other hand, K-means implementation on

FPGA depends upon the FPGA architecture used and may differ significantly depend-

ing on the type of FPGA being used.
Conclusion and future directions
This paper surveys various data processing platforms that are currently available and

discusses the advantages and drawbacks for each of them. Several details on each of

these hardware platforms along with some of the popular software frameworks such as

Hadoop and Spark are also provided. A thorough comparison between different plat-

forms based on some of the important characteristics (such as scalability and real-time

processing) has also been made through star based ratings. The widely used k-means

clustering algorithm was chosen as a case study to demonstrate the strengths and

weaknesses of different platforms. Some of the important characteristics of k-means al-

gorithm such as its iterative nature, compute-intensive calculations and aggregating

local results in a parallel setting makes it an ideal choice to better understand the vari-

ous big data platforms. It should be noted that many of the analytical algorithms share

these characteristics as well. This article provides the readers with a comprehensive re-

view of different platforms which can potentially aid them in making the right decisions

in choosing the platforms based on their data/computational requirements.

The future work involves investigating more algorithms such as decision trees, near-

est neighbor, pagerank etc. over different platforms. For empirical evaluation, different
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experiments involving varying data size and response times can be performed over vari-

ous platforms for different algorithms. Through such an analysis we will get valuable

insights which can be useful in many practical and research applications. One other im-

portant direction of research will be to choose the right platform for a particular appli-

cation. Based on the specific application needs, one can tailor their platform specific

factors such as the amount of hard disk, memory and the speed required for optimally

running the application. This study will provide a first step to analyze the effectiveness

of each of the platforms and especially the strengths of them for handling real-world

applications. Another direction will be to investigate the possibility of combining mul-

tiple platforms to solve a particular application problem. For example, attempting to

merge the horizontal scaling platforms such as Hadoop with vertical scaling platforms

such as GPUs is also gaining some recent attention. This involves several non-trivial

tasks not only at the platform level but also becomes challenging to decompose the al-

gorithm into parts and running various algorithmic components in various platforms.

A combination of platforms might be more suitable for a particular algorithm and can

potentially resolve the issue of making it highly scalable (through horizontal scaling) as

well as performing real-time analysis (through vertical scaling).
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